Candidate-Label Learning: A Generalization of Ordinary-Label Learning and Complementary-Label Learning
نویسندگان
چکیده
منابع مشابه
Multi-Label Learning with Weak Label
Multi-label learning deals with data associated with multiple labels simultaneously. Previous work on multi-label learning assumes that for each instance, the “full” label set associated with each training instance is given by users. In many applications, however, to get the full label set for each instance is difficult and only a “partial” set of labels is available. In such cases, the appeara...
متن کاملExploiting Label Relationship in Multi-Label Learning
In many real data mining tasks, one data object is often associated with multiple class labels simultaneously; for example, a document may belong to multiple topics, an image can be tagged with multiple terms, etc. Multi-label learning focuses on such problems, and it is well accepted that the exploitation of relationship among labels is crucial; actually this is the essential difference betwee...
متن کاملMulti-Label Learning with Label Enhancement
Multi-label learning deals with training instances associated with multiple labels. Many common multi-label algorithms are to treat each label in a crisp manner, being either relevant or irrelevant to an instance, and such label can be called logical label. In contrast, we assume that there is a vector of numerical label behind each multi-label instance, and the numerical label can be treated a...
متن کاملReverse Multi-Label Learning
Multi-label classification is the task of predicting potentially multiple labels for a given instance. This is common in several applications such as image annotation, document classification and gene function prediction. In this paper we present a formulation for this problem based on reverse prediction: we predict sets of instances given the labels. By viewing the problem from this perspectiv...
متن کاملMulti-Label Manifold Learning
This paper gives an attempt to explore the manifold in the label space for multi-label learning. Traditional label space is logical, where no manifold exists. In order to study the label manifold, the label space should be extended to a Euclidean space. However, the label manifold is not explicitly available from the training examples. Fortunately, according to the smoothness assumption that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN Computer Science
سال: 2021
ISSN: 2662-995X,2661-8907
DOI: 10.1007/s42979-021-00681-x